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Theory of the Autozero Box and the Transverse

Tune Measurement System of the Tevatron

Cheng-Yang Tan

Beams Division/Tevatron

ABSTRACT: This paper is divided into two major parts: the theory of how

the autozero box is used to suppress the revolution lines and the theory of how the

transverse tune is measured. We will show that the autozero box will be unable to

suppress all the revolution lines if there are relative phase errors between the plates

of the stripline pickup and these unsuppressed lines will determine the minimum

dynamic range needed for tune measurement. For tune measurement, we will show

that the theoretical size of the tune line for a 1 V potential di�erence across the

kickers would require a 16-bit analogue to digital converter.



PART I

The following pages will present the calculations for understanding the workings of

the autozero box. We will show that we cannot suppress all the revolution lines if there

are relative phase errors between the plates in the pickups. The size of the unsuppressed

revolution lines will strongly determine the dynamic range needed for measuring the tune

in the machine.
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AUTO-ZERO

The auto-zero box is designed to suppress the revolution lines in the spectrum of the

mixed down di�erence signal. These revolution lines arise because the closed orbit of the

bunch does not necessarily go through the centre of the pickup. However, we will show

that the suppression of all the revolution lines is not possible if the pickup has impedance

errors from construction. The autozero box schematic is shown in Figure 1

∆ Ω

Figure 1 This is the schematic used to calculate VF . The errors

in the pickup plates are discussed in Pickups.

Let us make the following assumptions with regard to the auto-zero box:

(i) The pickup plates have a impedance mismatch which will be discussed in the section

Pickups.

(ii) The frequency of the closed orbit transverse motion is within the bandwidth of the

autozero box. In practice this motion must be � 1 Hz.
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Let us �rst assume that the bunch is a Æ-function, then the bunch at the pickup can

be described by

Ib(z; t) = a
1X

n=�1

Æ
�
t� z

c
� nT

�
(1)

where a = �Nq, and T = 2�=!r is the revolution period of the bunch. (The � factor in a

is explained in Enhancement .) Then in Fourier space

~Ib(z; !) = a
1X

n=�1

ei!(nT+z=c)

= a!re
i!z=c

1X
n=�1

Æ(! � n!r)

(2)

where we have de�ned the Fourier transform as

~f(!) =

Z 1

�1
dt f(t)ei!t (3)

The currents induced on the pickup plates A and B due to Ib are

~IA(z; !) =
~Ib(z; !)

2

�
1� 2�

D

�

~IB(z; !) =
~Ib(z; !)

2

�
1 +

2�

D

�
9>>>=
>>>;

(4)

for a bunch displacement of �. See Figure 1.

Enhancement

There is an enhancement factor � which takes into account the fact that the bunch

is not spread out throughout the machine but is in a �nite bucket. We suppose that the

length of the sampling gate �g > �bunch and �g � hTri where �g is the length of the gate,

�bunch is the time spread of the bunch, and hTri is the mean revolution period of the bunch.

Therefore,

� = hTri=�bunch (5)
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Figure 2 The equivalent circuit is shown here. The two striplines

in the pickup are modelled as two transmission lines. Stripline A is

assumed to be perfectly matched, while stripline B has an error of

�Zei�(!) in its characteristic impedance.

PICKUPS

We will model each stripline in the pickup as a transmission line. See Figure 2. Let us

suppose that the two pickup plates A and B are not identical with A having a characteristic

impedance of Z0 and perfectly terminated with Z0. B is identically terminated with Z0,

but its characteristic impedance is Z0 + �Zei�(!) with �Z=Z0 � 1 and �(!) is some

phase error which is a function of !. For the purposes of this paper, we will assume that

Z0;�Z 2 R. Let us suppose that �(!) is analytic and therefore can be written as

�(!) = a0 + a1! + a2!
2 + : : : (6)

We will suppose that at d.c. there is no phase error, therefore a0 � 0. We will make also
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the simplifying assumption that non-linear terms in ! are also zero, so that

�(!) = a1! (7)

We can always reparametrize a1, so that it looks like time i.e. a1 ! `=c, therefore the

characteristic impedance of stripline B is Z0 +�Zei!`=c.

Thus with the above conditions, we �nd that the voltages ~VA and ~VB induced by a

bunch at z = 0, are

~VA(!) =
Z0
2

�
~IA(!; 0)� ei!L=c ~IA(!; L)

�
~VB(!) =

"
Z0
2

 
1 +

�Zei!`=c

2Z0

!
� �Zei!`=c

4
ei2!L=c

#
~IB(!; 0)�

Z0
2
ei!L=c~IB(!; L)

9>>>=
>>>;
(8)

See Appendix A for the derivation of (8).

Let us interpret what (8) is by setting � = 0 after transforming it back to the time

domain

VA(t) =
aZ0
4

1X
n=�1

Æ(t� nT )� Æ

�
t� 2L

c
� nT

�

VB(t) =
aZ0
4

1X
n=�1

Æ(t� nT )� Æ

�
t� 2L

c
� nT

�
+

a�Z

8

1X
n=�1

Æ

�
t� `

c
� nT

�
� Æ

�
t� (2L+ `)

c
� nT

�

9>>>>>>>>>>=
>>>>>>>>>>;

(9)

The �rst sum in (9) of VB is the usual doublet as in VA. The second sum shows that there

are two more reections coming at t = `=c and t = (2L+ `)=c. This means that even if we

have an ideal autozero box, (VA � VB) can never be zero if we have phase errors.

Let us consider the case when ` = 0, then (9) becomes

VA(t) =
aZ0
4

1X
n=�1

Æ(t� nT )� Æ

�
t� 2L

c
� nT

�

VB(t) =
aZ0
4

�
1 +

�Z

2Z0

� 1X
n=�1

Æ(t� nT )� Æ

�
t� 2L

c
� nT

�
9>>>>>=
>>>>>;

(10)
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which means that to �rst order in �Z=Z0, the magnitude of VB is increased by a factor

of (1 + �Z=2Z0) than when �Z = 0. Thus this type of error is just a simple shift in

the electrical centre of the pickup. Therefore, we would expect that if the impedance

error in the stripline is small, and ` = 0, this sort of stripline error would not prevent the

autozero box from removing the revolution lines completely.
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FEEDBACK

The feedback process in the autozero circuit starts with ~VA and ~VB . The objective is

to get ~V� to zero by setting the level of the attenuator with ~VF . ~VF is also the output

voltage that is used for tune measurement.

Substituting (4) into (8), we have

~VA(!) = �iaZ0
2

�
1� 2�

D

�
!re

i!L=c sin
!L

c

1X
n=�1

Æ(! � n!r)

~VB(!) = �ia
2

 
Z0 +

�Zei!`=c

2

!�
1 +

2�

D

�
!re

i!L=c sin
!L

c

1X
n=�1

Æ(! � n!r)

9>>>>>=
>>>>>;
(11)

Let us suppose that the revolution frequencies in the bunch are distributed as �(!r)

then ~VA and ~VB are simply modi�ed by integrating over �, i.e.

~VA(!) = �iaZ0
2

�
1� 2�

D

�
ei!L=c sin

!L

c

1X
n=�1

Z 1

�1
�(!r)Æ(! � n!r)!r d!r

= �iaZ0
2

�
1� 2�

D

�
ei!L=c sin

!L

c

1X
n=�1

�(!=n)
!

n

~VB(!) = �ia
2

 
Z0 +

�Zei!`=c

2

!�
1 +

2�

D

�
ei!L=c sin

!L

c
�

1X
n=�1

Z 1

�1
�(!r)Æ(! � n!r)!r d!r

= �ia
2

 
Z0 +

�Zei!`=c

2

!�
1 +

2�

D

�
ei!L=c sin

!L

c

1X
n=�1

�(!=n)
!

n

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

(12)

which are a series of lines centred around n!r in the frequency domain.

Looking at Figure 1, we see that

~V�(!) = "~VA(!)� ~VT (!)

= "~VA(!)� ~VB(!)10
�k ~VF (0)=20

9=
; (13)
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Figure 3 The phase of the local oscillator is chosen such that the

zero of the sine wave crosses at t = L=c.

where ~VA ! "~VA after going through the attenuator and k is the gain of the variable

attenuator. Note that ~VF (0) is correct in (13) and will be explained later. See Appendix B

for the derivaton of the attenuation factor 10�k
~VF=20.

Next ~V� goes through a mixer with local oscillator frequency 
 = M!r where M is a

large positive number. In t-space, the result of going through the mixer is

V
(t) = V�(t) sin(
t+ �) (14)

where � is the arbitrary phase chosen such that the sine function crosses the mid-point of

the pickup signal for a Æ-function bunch. See Figure 3. It is easy to show that � = ��
L=c,
therefore

V
(t) = V�(t) sin(
t+ � � 
L=c)

= �V�(t) sin(
t� 
L=c)
(15)
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Fourier transforming the above (See Appendix D for derivation), we have

~V
(!) = � 1

2i

h
e�i
L=c ~V�(! +
)� ei
L=c ~V�(! � 
)

i
(16)

Then ~V
 goes through a low-pass �lter which has the usual transfer function

~HF (!) =
1r

1 + !2

!2

F

(17)

where !F is the 3dB point which we choose to be 2!r, thus (17) becomes

~HF (!) =
1q

1 + !2

4!2
r

(18)

Finally, the output ~VF is

~VF (!) = � 1

2i
q
1 + !2

4!2
r

h
e�i
L=c ~V�(! + 
)� ei
L=c ~V�(! � 
)

i
(19)

Notice that because of the �lter, there are only two lines of interest in ~VF which are at

! = 0 and ! = !r.

Next, ~VF goes through the sample and hold circuit which is sampling at !r. This

means that the ~VF (!r) line gets folded on top of the ~VF (0) line, i.e. the input voltage to

the variable attenuator is at d.c. We will choose to use ~VF (0) to set the level of attenuation

rather than ~VF (0) + ~VF (!) because the strength of each line is not independent of each

other. We will further show that if there are no phase errors, ~VF (!) will vanish as well as

~VF (0) when the variable attenuator is set this way. Therefore, when we look at ~VF (0), we

have

~VF (0) = � 1

2i

h
e�i
L=c ~V�(
)� ei
L=c ~V�(�
)

i
= � 1

2i

h
"
�
e�i
L=c ~VA(
)� ei
L=c ~VA(�
)

�
+

10�k
~VF (0)=20

�
ei
L=c ~VB(�
)� e�i
L=c ~VB(
)

�i
=

aZ0
2

sin

L

c
R(
)

�
"

�
1� 2�

D

�
� 10�k

~VF (0)=20
�
1 +

�Z

2Z0
cos


`

c

��
1 +

2�

D

��
(20)
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where

R(!) =
1X

n=�1

�(!=n)!=n (21)

and observed that R(!) = R(�!) and that R(!) is also dimensionless.

To solve for ~VF (0) in (20), we will make a substitution for the gain of the attenuator

k and 10�k
~VF (0)=20

k =
1

�
so that �! 0 as k!1.

10�k
~VF (0)=20 = e���k ~VF (0) where �� = 1

20 log 10

(22)

Therefore, (20) can be expanded as

~VF (0; �) =
aZ0
2

sin

L

c
R(
)

�
"

�
1� 2�

D

�
�
�
1 +

�Z

2Z0
cos


`

c

��
1 +

2�

D

�
��

1� ��

�
~VF (0; �) +

��2

2!�2
~VF (0; �)

2 � : : :

�� (23)

where we have explicitly put in the � dependence in ~VF . Next, let us assume that ~VF (0; �)

is �nite as �! 0 and therefore has the following series expansion in �

~VF (0; �) =
1X
n=0

an�
n (24)

Substituting (24) into (23) gives us

1X
n=0

an�
n =

aZ0
2

sin

L

c
R(
)

�
"

�
1� 2�

D

�
�
�
1 +

�Z

2Z0
cos


`

c

��
1 +

2�

D

�
�

0
@1� ��

�

1X
n=0

an�
n +

��2

2!�2

 
1X
n=0

an�
n

!2

� : : :

1
A
3
5 (25)

If � is small, we can expand (25) to O(�) to give

a0 =
aZ0
2

sin

L

c
R(
)

�
"

�
1� 2�

D

�
�
�
1 +

�Z

2Z0
cos


`

c

��
1 +

2�

D

�
��

1� ��
�a0
�
+ a1

�
+

��2

2!

�a0
�
+ a1

�2 � : : :

�� (26)
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Then if we demand that (26) remains �nite as �! 0, we must have a0 � 0 which follows

that a1 is found by solving

0 = "

�
1� 2�

D

�
�
�
1 +

�Z

2Z0
cos


`

c

��
1 +

2�

D

��
1� ��a1 +

(��a1)
2

2!
� (��a1)

3

3!
+ : : :

�

= "

�
1� 2�

D

�
�
�
1 +

�Z

2Z0
cos


`

c

��
1 +

2�

D

�
e���a1

) a1 =
1

��
log

2
4
�
1 + �Z

2Z0

cos 
`c

� �
1 + 2�

D

�
"
�
1� 2�

D

�
3
5

(27)

Therefore

~VF (0; k) =
20

k
log10

2
4
�
1 + �Z

2Z0

cos 
`c

��
1 + 2�

D

�
"
�
1� 2�

D

�
3
5 for k � 1 (28)

That (28) is correct can be easily checked. See Appendix C. Notice also that as the gain

k !1, ~VF (0)! 0 as required.

Now that we know how ~VF (0) looks like, we can calculate the strength of the ~VF (!r)

line. From (19) we have

~VF (!r) = � 1

i
p
5

h
e�i
L=c ~V�(!r + 
)� ei
L=c ~V�(!r � 
)

i

= � "

i
p
5

2
4e�i
L=c

0
@~VA(!r + 
)�

~VB(!r + 
)
�
1� 2�

D

�
�
1 + �Z

2Z0

cos 
`c

��
1 + 2�

D

�
1
A�

ei
L=c

0
@ ~VA(!r � 
)�

~VB(!r � 
)
�
1� 2�

D

�
�
1 + �Z

2Z0

cos 
`c

��
1 + 2�

D

�
1
A
3
5

(29)

which can be expanded to

~VF (!r) =
aZ0

2
p
5
ei!rL=cR(
)"

�
1� 2�

D

��
2 sin


L

c
cos

!rL

c
�

2 sin 
L
c cos !rLc + �Z

2Z0

�
ei(!r+
)`=c sin

(!r+
)L
c � ei(!r�
)`=c sin

(!r�
)L
c

�
1 + �Z

2Z0

cos 
`c

3
5

� a�Z

4
p
5
ei!rL=cR(
)"

�
1� 2�

D

��
2 sin


L

c
cos

!rL

c
��

ei(!r+
)`=c sin
(!r + 
)L

c
� ei(!r�
)`=c sin

(!r � 
)L

c

��
(30)
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where we have made the approximation that R(!r � 
) � R(
) and (�Z=Z0)
2 � 0. It is

important to notice that unlike ~VF (0), ~VF (!r) is independent of the gain of the ampli�er

k. Its existence and strength depends on both the value of ` and �Z=Z0. It can be easily

checked that when either �Z = 0 or when ` = 0, (30) vanishes as required.

We can normalize (30) by the bunch currenty �NqR(
), impedance Z0 and the �xed

attenuation " to obtain a dimensionless quantity independent of the shape of the bunch,

~vF (!r) when � = 0

~vF (!r) =
~VF (!r)

�NqZ0R(
)"

=
1

8
p
5

�
�Z

Z0

�
ei!rL=c

�
2 sin


L

c
cos

!rL

c
��

ei(!r+
)`=c sin
(!r +
)L

c
� ei(!r�
)`=c sin

(!r � 
)L

c

��

9>>>>>>>=
>>>>>>>;

(31)

which has a maximum value of

~vmax
F (!r) =

1

2
p
5

�
�Z

Z0

�
(32)

y In Fourier space, current has dimensions of charge.
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SPECIAL CASE

Let us consider the special case of a parabolic distribution

�(!) =

8><
>:
� 6(! � !1)(! � !2)

(!2 � !1)3
for !1 < ! < !2

0 otherwise

(33)

Then

R(
) � !r

m2X
n=�m1

�

�
M!r
M + n

�
for M � 1 (34)

where M!r=(M �m1) is just below !2 and M!r=(M +m2) is just above !1.

With the above distribution, and using the following numerical values,

!r = 2� � (47� 103 Hz)


 = 1127� !r

(!2 � !1) = 4�

� = 0

L = 0:5 m

" = �10 dB

� = 21� 10�6=10�9

Z0 = 50


�Z=Z0 = 0:1

N = 1011

R(
) =
3!r

2(!2 � !1)
=

3

8�
!r

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(35)

we can plot ~VF (!r) as a function of 
`=c which is shown in Figure 4. Although the values

of ~VF (!r) and ~vF (!r) are small for 0 < 
`=c < 2�, they are in fact growing and the upper

bounds are j~VF (!r)j < 12:5 dBV or 4:2 V and j~vF (!r)j < �33 dB.
14



Figure 4 These two graphs show the relationship between ~VF (!r),

~vF (!r) as 
`=c varies. We have only plotted the phase error from

0 to 2� and clearly both ~VF (!r) and ~vF (!r) grow as the 
`=c in-

creases. However this growth is in fact bounded above with j ~VF (!)j <
12:5 dBV or 4:2 V and j~vF (!)j < �33 dB for the numerical values

given in (35).
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PART II

The following pages will present the calculations for understanding the transfer func-

tions from the generator of excitation to the autozero box. We will calculate the expected

size of the tune line and show that it will be small compared to the revolution line in

the spectrum. The di�erence in size between the revolution line and the tune line will

determine the minimum dynamic range of the ADC needed for our measurements.
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THE TUNE MEASUREMENT SYSTEM

The tune measurement system basically consists of a kicker, pickup, and autozero box.

See Figure 5.

Ω

Figure 5 This is a schematic of the tune measurement system.

The bunch is excited by the kickers and the signal is picked up by

the pickups. The only relevant portions in the autozero box for signal

processing are the summer, mixer and �lter. The resulting voltage

VQ is sent to the ADC. The ~H�!� are the transfer functions between

the generator G etc to the �lter. For this part of the calculation, the

pickups are assumed to be perfect and the beam is going through the

electrical centre of the pickup. y is just the oscillation from the tune.

For the purposes of calculating the strength of the tune line ~VQ | unlike the previous

calculation for ~VF (!) | we will make the assumption that the pickups are perfect and

only use the relevant parts of the autozero box which are the summer, mixer and �lter to

calculate ~VQ. Since the pickups are perfect, the revolution lines can be perfectly suppressed

when the attenuators are both set to " because the beam is going through the electrical
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centre of the pickup, thus ~VA ! "~VA and ~VB ! " ~VB. The roadmap to allow us to calculate

~VQ starts with the calculation of the following transfer functions:

(i) the transfer function from the generator to the kicker ~Hg!k.

(ii) the transfer function from the kicker to produce a beam transverse position y at

the pickup ~Hk!y.

(iii) the transfer function from the transverse y position to produce a current in the

pickups ~Hy!i.

(iv) and the transfer function from the pickup current through the summer in the

autozero box to produce ~Hi!�.

(v) A separate analysis of ~V
 because the mixer is a non-linear device.

(vi) Finally ~VQ, after ~V
 goes through the �lter with the transfer function ~H
!Q.
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TRANSFER FUNCTION FROM GENERATOR TO KICKER

We need to know the angular kick of the beam � in terms of the potential di�erence

V between the two kicker plates. In the electrostatic case, if we assume that the physical

length of the kicker is ` in metres, the separation of the kicker plates is d in metres and

the potential di�erence between the two kicker plates is V in volts, then the transverse

momentum change dp is simply given by

dp =
e

cd

Z `

0
dz V (z) in S.I. units

=
1

d

Z `

0
dz V (z) in eV/c

(36)

However, because we have a kicker terminated at the both ends, there is a current

owing in the kicker plates and thus there is a contribution from the magnetic �eld as

well. If we assume that the kicker plates are driven di�erentially, we can assume that the

kicker plates form a TEM structure and thus B will supply an identical kick to the particle

as E, thus

dp =
2

d

Z `

0
dz V (z; t) (37)

Therefore the angular displacement of the beam as a function of potential di�erence

V between the plates is given by

dp=p = �(V ) =
2

pd

Z `

0
dz V (z; t) (38)

To calculate the transfer function ~Hg!k(!), we need to know how V (z; t) varies as

a function of its position z along the kicker as well as time. We will suppose that the

kicker plates form a TEM structure which has a coupling impedance of Zk. We will also

assume that the upstream and downstream terminations of both plates are terminated

19



with R1 = R2 = Zodd (refer to Appendix A). The boundary conditions arey

~Ig(0; !) 6= 0

~Ig(`; !) = 0
(39)

Thus
~V (z; !) =

Zodd
2

~Ig(0; !)e
i!z=c

:_: V (z; t) =
Zodd
2

Ig(0; t� z=c)

9>=
>; (40)

Figure 6 This is the cross sectional view of the kicker. The bunch

must move towards negative z in this con�guration in order for it to

be kicked. The bunch moving towards positive z will not be kicked.

Let us introduce a new variable s which is the longitudinal position of a particle at

t = 0, i.e. z = s at t = 0. Since the particle is moving at c towards smaller z (See Figure 6),

then clearly at any other time, the position of the particle is z = s� ct. Therefore, we can

make a change of variable from t to s so that V no longer has any explicit time dependence

which ensures that the particle is in the kicker when the integral is done

V (z; t)! V (z; s) =
Zodd
2

Ig(0; (s� 2z)=c) (41)

y Zk does not explicitly appear in the calculations because the odd impedance Zodd contains
both the characteristic impedance Z0 (impedance between kicker plate and wall) and the
coupling impedance Zk (impedance between kicker plates). The generator only sees Zodd
on each stripline which consists of the kicker plate and the wall.
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Substituting (41) into (37), we have

dp =
Zodd
d

Z `

0
dz Ig(0; (s� 2z)=c) (42)

where we have implicitly assumed that each kicker plate is driven di�erentially at V=2 and

thus the potential di�erence between the plates is V .

To calculate ~Hg!k(!), we apply the trick discussed in the Appendix E, by letting

Ig(0; t) = 1� e�i!
0t, so that

dp

p
=

Zodd
pd

Z `

0
dz e�i!

0(s�2z)=c

=
Zodd
pd

e�i!
0(s�`)=c sin!

0`=c

!0=c

(43)

Thus the transfer function ~Hg!k(!), is obtained by identifying the coeÆcient of e�i!
0s=c

and letting !0 ! !,

~Hg!k(!) =
1

pd
ei!`=c

sin!`=c

!=c
(44)

There is no Zodd in (44) because we want the excitation function to have the dimension

of volts in the time domain.
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TRANSFER FUNCTION FROM

KICKER TO TRANSVERSE POSITION

We will calculate the transfer function from kicker to the transverse position at the

pickup ~Hk!y(!) in this section.

We start �rst with the result from S. van der Meer who calculated the transverse

position of one particle y(s; t) as a function of s | the longitudinal position of the beam

w.r.t. the kicker in the direction of the beam | after it is kicked by the kicker.

Suppose the kicker deects the beam by �e�i!t, then y must satisfy the following

equations
y(0; t) = y(2�Rav; t+ 2�=!j)

y0(2�Rav; t+ 2�=!j) = y0(0; t)� �e�i!t

y00 + y
1� 1

2��
00 + 1

4�
02

�2
= 0 0 < s < 2�Rav

9>>>>=
>>>>;

(45)

where \0" is d=ds and Rav =
1
!j

ds
dt , !j is the revolution frequency of particle j and � is the

usual lattice parameter.

The �rst condition of (45) simply states the periodic boundary condition that the

transverse position of the particle is unchanged by the kick. The second condition states

that the di�erence in angular position of the particle after one turn is �e�i!t. And �nally

the third equation is just the usual di�erential equation from Courant-Snyder theory.

The solution which satis�es (45) is

y(s; t) =
�
p
��k
4

[A1e
�i(�1+�2) � A2e

�i(�1��2)]e�i!t (46)

where
�1(!) = �!=!j � (!=!j)(s=Rav)

�2 = �Q� �

9=
; (47)

and
A1(!) = 1= sin(�=!j[! +Q!j ])

A2(!) = 1= sin(�=!j[! �Q!j ])

9=
; (48)
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where � is the betatron phase with respect to the kicker, with the condition that � = 2�Q

at s = 2�Rav and � = 1=�0. The demonstration of how this solution is obtained is shown

in Appendix F.

Thus using the results from and Appendix E and Appendix F, we obtain

~Hk!y(!; !j) =

p
�s�k
4

�
A1e

�i(�1+�2) �A2e
�i(�1��2)

�
(49)

which is the transfer function for particle j from the kicker to s.

For the particular case of calculating yj at the pickup s = sp, we have yj = yj(sp; t) �
yp;j at the pickup, we can rewrite sp;j= _sp;j as

sp;j= _sp;j = �kp is the time particle j takes to arrive from the kicker to the pickup.

= T � �pk or written in terms of T and the time from pickup to kicker.

= 2�=!j � �pk
(50)

which we can use to rewrite the � equations of (103) in Appendix F as

�1(!) = !(�sp;j= _sp;j + �=!j) = !(�pk � �=!j)

�2 = �Q� �p;j = �Q� (2�Q� �pk) = �pk � �Q

9=
; (51)

and thus (49) can be written in its full glory as

~Hk!y(sp; !; !j) =

p
�p�k
4

 
e�i[!(�pk��=!j)+�pk��Q]

sin( �!j [! +Q!j ])
� e�i[!(�pk��=!j)��pk+�Q]

sin( �!j [! �Q!j])

!
(52)
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TRANSFER FUNCTION FROM

TRANSVERSE POSITION TO CURRENT

We will calculate the transfer function from the transverse position of the particle in

the pickup to the current induced on the pickup ~Hy!i(!) in this section.

The current induced on the pickup plates A and B by particle j are given by

Ij;A(t) =
Ij
2

�
1 +

2yorb;j(t)

D
+
2yp;j(t)

D

�
� JDC + Jorb + JQ

Ij;B(t) =
Ij
2

�
1� 2yorb;j(t)

D
� 2yp;j(t)

D

�
� JDC � Jorb � JQ

9>>>=
>>>;

(53)

where Ij = �q!j=2� is the current from particle j and D is the separation between the two

pickup plates. Notice that JDC�Jorb is the part that is taken care of by the autozero box

as was discussed in Part I of this paper. JQ, on the other hand, is � 20 kHz which is much

larger than the bandwidth of the autozero box and thus is not suppressed. Therefore, the

only relevant part of (53) for calculating ~Hy!i(!) is JQ, thus

JQ =
Ijyp;j(t)

D

) ~Hy!i(!; !j) = Ij(!j)=D

9>=
>; (54)
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TRANSFER FUNCTION FROM CURRENT TO VOLTAGE

In this section we will obtain the transfer function from current induced on the pickup

plates to voltage as seen by one port of the summer ~Hi!v(!).

The voltage ~Vj(0; !) at the summer from particle j is given by (See Appendix A and

(8) in Pickups)

~Vj(0; !) =
Z0
2

�
1� ei2!L=c

�
~Ij;(A;B)(0; !) (55)

where L is the length of the pickup.

Looking at the A plate of the pickup, ~Vj;A(0; !) then goes through an attenuator so

that ~Vj;A(0; !)! "Vj;A(0; !) and similarly for ~Vj;B(0; !) before going through the summer.

Going through the summer, we have

~V�(!) = 2"~Vj(0; !) = "Z0

�
1� ei2!L=c

�
~Ij(0; !) (56)

because ~Ij;A = �~Ij;B � ~Ij .

Therefore, the response function from particle j is

~Hi!�(!) = "Z0

�
1� ei2!L=c

�
(57)

After this point ~V� goes through a mixer which is a non-linear device and the use of

transfer functions break down at this point.
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TRANSFER FUNCTION FROM GENERATOR TO SUMMER

As was mentioned previously, the mixer is a non-linear device and thus cannot be

treated with the transfer function formalism. Thus we will multiply all our previously

calculated transfer functions to get the transfer function from the generator to the summer

~Hg!�(sp; !; !j) from particle j

~Hg!�(sp; !; !j) = ~Hi!�(!) � ~Hy!i(!; !j) � ~Hk!y(sp; !; !j) � ~Hg!k(!)

=
h
"Z0

�
1� ei2!L=c

�i
�
�
Ij(!j)

D

�
�"p

�pu�k
4

�
A1e

�i(�1+�2) �A2e
�i(�1��2)

�#
�
�
1

pd
ei!`=c

sin!`=c

!=c

�
(58)

As a check on (58), we see that dimensionally in the time domain, we have

[volt=volt] = [volt=amp]� [amp=metre]� [metre=rad]� [rad=volt] (59)

which means that ~Hg!�(sp; !; !j) is the voltage that will be seen after the summer due

to a potential di�erence of 1 volt at the kicker.

Transfer function from Generator to Summer with Bunch distribution

Let the distribution of the particle revolution frequencies be �(!j) so thatZ 1

0
d!j �(!j) = N (60)

where N is the total number of particles in the distribution. Therefore the response

function ~Hg!� is simply given by

~Hg!�(sp; !) =

Z 1

0
d!j �(!j) ~Hg!�(s; !; !j) (61)

Let us de�ne P (!j) to be the part of ~Hg!� which depends on !j i.e.

P (!j) � !j

�
A1e

�i(�1+�2) �A2e
�i(�1��2)

�
(62)
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so that the part of (61) which contributes to the integral is

Z 1

0
�(!j)P (!j) d!j =

Z 1

0
�(!j)

�
A1e

�i(�1+�2) �A2e
�i(�1��2)

�
!j d!j (63)

Substituting in �1, �2, A1 and A2 from (48) and (51) into (63), we have

Z 1

0
�(!j)P (!j) d!j = e�i(�pk+!�pk)

Z 1

0

e
i �
!j
[!+!jQ]

�(!j)!j

sin
�
�
!j

�
! + !jQ

�� d!j�

ei(�pk�!�pk)
Z 1

0

e
i �
!j
[!�!jQ]

�(!j)!j

sin
�
�
!j

�
! � !jQ

�� d!j

(64)

Now 1= sin(�x=x0) can be expanded as

1

sin
�
� x
x0

� = � 1

�

1X
n=�1

(�1)n
n� x

x0

(65)

Therefore

1

sin �
!j
(! �Q!j)

= � 1

�

1X
n=�1

(�1)n !j

(n�Q)
�
!j � !

n�Q

� (66)

Substituting (66) into (64), we have

Z 1

0
�(!j)P (!j) d!j = �e

�i(�pk+!�pk)

�

1X
n=�1

(�1)n
(n�Q)

Z 1

0

e
i �
!j
[!+!jQ]

�(!j)!
2
j

!j � !
n�Q

d!j+

ei(�pk�!�pk)

�

1X
n=�1

(�1)n
(n+Q)

Z 1

0

e
i �
!j
[!�!jQ]

�(!j)!
2
j

!j � !
n+Q

d!j

(67)

Let us de�ne R(!; !j; Q) to be

R(!; !j; Q) � e
i �
!j
[!+!jQ]

�(!j)!
2
j (68)

then (67) can be written asZ 1

0
�(!j)P (!j) d!j = �e

�i(�pk+!�pk)

�

1X
n=�1

(�1)n
(n�Q)

Z 1

0

R(!; !j;+Q)

!j � !
n�Q

d!j+

ei(�pk�!�pk)

�

1X
n=�1

(�1)n
(n+Q)

Z 1

0

R(!; !j;�Q)
!j � !

n+Q

d!j

(69)
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Figure 7 The line integral used to calculate
R1
0

R(!;!j ;�Q)
!j�

!
n�Q

d!j .

Note that this integral is actually ill-de�ned because we have to inte-

grate through the pole because we cannot integrate around a closed

contour (any contour either in the upper or lower half plane does not

vanish as the radius of the contour goes to in�nity). We choose the

line integral to go above the pole because doing so will give us a physi-

cally correct answer. See Mathematics for Physicists, P. Dennery and

A Krzywicki who show that this type of integral is path dependent.

If we assume that �(!j) = 0 for !j < 0, then the lower limit of the integrals in (69)

can be mapped 0! �1 and if we allow !j to be complex, so that !j ! W 2 C in (69),

we can consider the line integral shown in Figure 7 in the W -plane

Z 1

0

R(!; !j;�Q)
!j � !

n�Q

d!j =

Z 1

�1

R(!;W;�Q)
W � !

n�Q

dW

= P

Z
R(!;W;�Q)
W � !

n�Q

dW � i�
X

Res

"
R(!;W;�Q)
W � !

n�Q

# (70)

Notice that we have not assumed that the integrand vanishes in the upper half plane
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because it does not. Therefore, (69) becomes

Z 1

0
�(!j)P (!j) d!j =

� e�i(�pk+!�pk)

�
�

1X
n=�1

(�1)n
(n�Q)

(
P

Z
R(!;W;+Q)

W � !
n�Q

dW � i�
X

Res

"
R(!;W;+Q)

W � !
n�Q

#)
+

ei(�pk�!�pk)

�
�

1X
n=�1

(�1)n
(n+Q)

(
P

Z
R(!;W;�Q)
W � !

n+Q

dW � i�
X

Res

"
R(!;W;�Q)
W � !

n+Q

#)

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(71)

Special Case

Let us again consider the special case where the frequency distribution is parabolic,

i.e.

�(!j) =

8><
>:
� 6N(!j � !1)(!j � !2)

(!2 � !1)3
for !1 < !j < !2

0 otherwise

(72)

We will also assume that

����!2 � !1
!r

����� 1 with !1 < !r < !2

0 < !1 < !2

9>=
>; (73)

where !r is the revolution frequency of the reference particle, so that only one pole is

within the frequency region of interest.

With the conditions in (73), the poles at W = 0 of R do not contribute in (71) and

29



thus becomes

Z 1

0
�(!j)P (!j) d!j =

� e�i(�pk+!�pk)

�
�

1X
n=�1

(�1)n
(n�Q)

(
P

Z
R(!;W;+Q)

W � !
n�Q

dW � i� �R

�
!;

!

n�Q
;+Q

�)
+

ei(�pk�!�pk)

�
�

1X
n=�1

(�1)n
(n+Q)

(
P

Z
R(!;W;�Q)
W � !

n+Q

dW � i� �R

�
!;

!

n+Q
;�Q

�)

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(74)

where

�R

�
!;

!

n�Q
;�Q

�
=

8><
>:
R

�
!;

!

n�Q
;�Q

�
0

!1 <
!

n�Q < !2

otherwise
(75)

There is a contribution from the residue whenever a pole is within !1 and !2. This

clearly occurs when

! = (n�Q)!r for �R
�
!; !

n�Q ;+Q
�

! = (n+Q)!r for �R
�
!; !

n+Q ;�Q
�

9>=
>; (75)

and thus the resonances occur at ! = (n�Q)!r. Therefore, the ~Hg!� spectrum consists

of a background which comes from the principal parts of (74) and resonant lines from the

residues �R which contribute whenever ! = (n � Q)!r. Substituting (74) back into (58)
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gives us

~Hg!�(sp; !) =
h
"Z0

�
1� ei2!L=c

�i ��Nq

2�D

�"p
�pu�k
4

#�
1

pd
ei!`=c

sin!`=c

!=c

�
�

"
�e

�i(�pk+!�pk)

�
�

1X
n=�1

(�1)n
(n�Q)

(
P

Z
R(!;W;+Q)

W � !
n�Q

dW � i� �R

�
!;

!

n�Q
;+Q

�)
+

ei(�pk�!�pk)

�
�

1X
n=�1

(�1)n
(n+Q)

(
P

Z
R(!;W;�Q)
W � !

n+Q

dW � i� �R

�
!;

!

n+Q
;�Q

�)#

(76)

for the parabolic distribution.
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MIXER AND FILTER

Next, ~Hg!� goes through a mixer with the local oscillator frequency at 
 with the

same phase chosen in Feedback we get from Appendix D

~V
(!) = � 1

2i

h
e�i
L=c ~Hg!�(! +
)� ei
L=c ~Hg!�(! � 
)

i
(77)

Then, �nally ~V
 goes through the �lter with its 3 dB point at at 2!r, and we have

~VQ(!) = � 1

2i
q
1 + !2

4!2
r

h
e�i
L=c ~Hg!�(! + 
)� ei
L=c ~Hg!�(! � 
)

i
(78)

which is the tune voltage that we would measure when the kicker is set to a potential dif-

ference of 1 V.

The result after substituting in (76) into (78) is

~VQ(Q!r)

"Z0�Nq!r�(!r)
� ~vQ

=
1

8�pDd!r�(!r)

s
�pu�k

1 +Q2=4
�

�
� 1

2i

�
e�i
L=c ~H((Q+M)!r)� ei
L=c ~H((Q�M)!r)

��
(79)

where ~H is de�ned in Appendix G.

32



SPECIAL CASE

Let us consider two special cases with the following numerical values together with the

earlier numbers which we used to calculate ~VF and ~vF

!r = 2� � (47� 103 Hz)

L = 0:5 m

` = 1:0 m

D = 7:62� 10�2 m

d = 7:62� 10�2 m

� = �

�pu = 100 m

�k = 80 m

�pk = 25=c s

Q = 0:4898

M = 1127

V = 1 V across kicker

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(80)

The �rst special case is when p = 150 GeV/c, we arrive at ~VQ(Q!r) = �66:5 dBV or

0:47 mV, ~vQ = �112 dB.

The second special case is when p = 1 TeV/c, we arrive at ~VQ(Q!r) = �83 dBV or

0:071 mV, ~vQ = �128:5 dB.

Taking the worst case scenario in which ~vmax
F = �33 dB, the minimum dynamic range

for the �rst case is 79 dB and for the second case it is 95:5 dB. This implies that we require

at least 96 dB of dynamic range for the ADC which translates to a minimum requirement

of 16 bits for the ADC. Figure 8 shows a plot of the tune for the given numerical values.
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Figure 8 This graph shows ~vQ for the 150 GeV/c case. The graph

is simply shifted by �16:5 dB for the 1 TeV/c case.
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APPENDIX A

We shall derive ~VA(!) and ~VB(!) here.

Figure 9 This is the transmission line model of the stripline. The

ends of the transmission line are terminated by R1 and R2. The length

of the line is l.

Using the transmission line model shown in Figure 9, it is easy to show that the current

I and voltage V measured anywhere along the stripline satis�es the wave equation

�
@2

@z2
� 1

c

@2

@t2

�8<
:
I(z; t)

V (z; t)

9=
; = 0 (81)

It is also easy to show that the relationsahip between I and V is

@V

@z
= �L@I

@t
@I

@z
= �C@V

@t

9>=
>; (82)

Fourier transforming (81), gives us

�
@2

@z2
+ k2

�8<
:

~I(z; !)

~V (z; !)

9=
; = 0 (83)

where k = !=c.
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The boundary conditions at R1 and R2 must satisfy current conservation, therefore"
�~Ib +

~V

R1
+ ~I

#
z=0

= 0

"
~Ib +

~V

R1
� ~I

#
z=l

= 0

9>>>>=
>>>>;

(84)

where our sign convention is that positive current ows out of a node.

The general solution to (81) is given by

~V = Feikz +Ge�ikz

~I =
1

Z0

�
Feikz �Ge�ikz

�
9>=
>; (85)

where we have applied the Fourier transformed resultes of (82) that ~V and ~I. F and G

are constants to be solved from the boundary conditions and Z0 =
p
L=C.

Substituting (85) into (84) to solve for the constants, we have

F =
1���� a1 b1

a2 b2

����
h
b2~Ib(0) + b1~Ib(l)

i

G =
�1���� a1 b1

a2 b2

����
h
a2~Ib(0)� a1~Ib(l)

i

9>>>>>>=
>>>>>>;

(86)

where

a1 =
1

R1
+

1

Z0

b1 =
1

R1
� 1

Z0

a2 =

�
1

R2
� 1

Z0

�
eikl

b2 =

�
1

R2
+

1

Z0

�
e�ikl

9>>=
>>; (87)

Using the above results, the voltage measured at z = 0 is simply

~V (0; !) = F +G (88)

Solving F and G for the boundary conditions R1 = Z0, R2 = Z0, gives us

~VA(!) =
Z0
2

�
~Ib(!; 0)� ei!l=c~Ib(!; l)

�
(89)
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Changing the boundary conditions to R1 = Z0, R2 = Z0 and Z0 ! Z0 + �Zei!`=c,

gives us

~VB(!) =

"
Z0
2

 
1 +

�Zei!`=c

2Z0

!
� �Zei!`=c

4
ei2!l=c

#
~IB(!; 0)�

Z0
2
ei!l=c~IB(!; l) (90)

if �Z=Z0 � 1.

APPENDIX B

We derive the attenuation factor 10�kVset=20 here.

Let Vset be the voltage which sets the level of attenuation. If Vin is the input voltage

to the attenuator, and Vout is the output voltage after attenuation, then

20 log10
Vout
Vin

= �kVset

:_: Vout = Vin10
�kVset=20

9=
; (91)

where k is the gain of the attenuator.
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APPENDIX C

To show that ~VF (0; k) which was derived as Equation (28) is correct, we have to show

that ~V�(!) is zero 8! when ` = 0. From the de�nition of ~V�(!), we have

~V�(!) = "~VA(!)� ~VB(!)10
�k ~VF (0)=20

= "~VA(!)�
" ~VB(!)

�
1� 2�

D

�
�
1 + �Z

2Z0

��
1 + 2�

D

�
� 0

(92)

as required.

The requirement that ` = 0 is quite clear. Introducing a phase error ei!`=c is equivalent

to introducing extra reections to VB(t). Thus VA(t) and VB(t) can never cancel.
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APPENDIX D

Let us derive the Fourier transform of

m(t) = f(t) sin
(t� t0) (93)

Clearly

m(t) =
f(t)

2i

h
ei
(t�t

0) � e�i
(t�t
0)
i

(94)

Fourier transforming the above, we have

~m(!) =
1

2i

�
e�i
t

0

Z 1

�1
f(t)ei(!+
)t dt� ei
t

0

Z 1

�1
f(t)ei(!�
)t dt

�
(95)

We can make a change of variables

!+ = ! + 


!� = ! � 


)
(96)

so that (95) can be easily transformed to

~m(!) =
1

2i

h
e�i
t

0 ~f(!+)� ei
t
0 ~f(!�)

i
=

1

2i

h
e�i
t

0 ~f(! + 
)� ei
t
0 ~f(! � 
)

i
9>=
>; (97)
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APPENDIX E

We will derive the McGinnis trick for obtaining transfer functions here.

Suppose the input function is

f(t) = e�i!
0t (98)

then the convolution between the transfer function H(t) and f(t) is

g(t) =

Z 1

�1
dt0 H(t� t0)e�i!

0t0 (99)

H(t� t0) can be written as a Fourier transform and thus g(t) becomes

g(t) =
1

2�

Z 1

�1
dt0

�Z 1

�1
d! ~H(!)e�i!(t�t

0)
�
e�i!

0t0

=
1

2�

Z 1

�1
dt0

�Z 1

�1
d! ~H(!)e�i!t

�
ei(!�!

0)t0

=

Z 1

�1
d! ~H(!)e�i!tÆ(! � !0)

= ~H(!0)e�i!
0t

) g(0) = ~H(!)

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(100)

Again, we have de�ned our Fourier transform pairs as

f(t) =
1

2�

Z 1

�1
d! ~f(!)e�i!t

~f(!) =

Z 1

�1
dt f(t)ei!t

9>>=
>>; (101)
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APPENDIX F

We will demonstrate the calculation of ~Hk!y using van der Meer's solution for y when

the kick is of the form � sin!t. van der Meer gave the following solution for the jth particle

yj =
�
p
��k
4

2
4sin

�
!
h
t� sj


j
Rav +

�

j

i
+ �Q� �

�
sin
�
�

j

�
! +Q
j

�� �

sin
�
!
h
t� sj


j
Rav +

�

j

i
� �Q+ �

�
sin
�
�

j

�
! �Q
j

��
3
5

9>>>>>>>=
>>>>>>>;

(102)

where Rav is the average radius of the ring. Let us de�ne the following

�1(!) = �!=
j � (!=
j)(s=Rav)

�2 = �Q� �

9=
; (103)

and
A1(!) = 1= sin(�=
j[! +Q
j ])

A2(!) = 1= sin(�=
j[! �Q
j ])

9=
; (104)

then (102) can be written as

yj =
�
p
��k
4

[A1 sin(!t+ �1 + �2)� A2 sin(!t+ �1 � �2)]

=
�
p
��k
8i

h�
A1e

i(�1+�2) � A2e
i(�1��2)

�
ei!t��

A1e
�i(�1+�2) � A2e

�i(�1��2)
�
e�i!t

i
(105)

Now using the results of Appendix E and using linearity, we can write (105) in terms of

the response function ~Hk!y

yj =
1

2i

h
~Hk!y(�!)ei!t � ~Hk!y(!)e

�i!t
i

(106)

Therefore, the response function is

~Hk!y(!) =
�
p
��k
4

�
A1e

�i(�1+�2) �A2e
�i(�1��2)

�
(107)
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APPENDIX G

Let us calculate

~V
(Q!r) = � 1

2i

h
e�i
L=c ~Hg!�(Q!r +
)� ei
L=c ~Hg!�(Q!r � 
)

i
(108)

From (76), let us gather the terms which contain !,

~H(!) �
�
1� ei2!L=c

�
ei!`=c

sin!`=c

!=c
�"

�e
�i(�pk+!�pk)

�
�

1X
n=�1

(�1)n
(n�Q)

(
P

Z
R(!;W;+Q)

W � !
n�Q

dW � i� �R

�
!;

!

n�Q
;+Q

�)
+

ei(�pk�!�pk)

�
�

1X
n=�1

(�1)n
(n+Q)

(
P

Z
R(!;W;�Q)
W � !

n+Q

dW � i� �R

�
!;

!

n+Q
;�Q

�)#

(109)

where

R(!; !j; Q) � e
i �
!j
[!+!jQ]

�(!j)!
2
j (110)

and

�R

�
!;

!

n�Q
;�Q

�
=

8><
>:
R

�
!;

!

n�Q
;�Q

�
0

!1 <
!

n�Q < !2

otherwise
(111)
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Then

e�i
L=c ~H(! +
) =

� 2iei(!L+(!+
)`)=c

(! + 
)=c
sin

(! + 
)L

c
sin

(! + 
)`

c
�"

�e
�i[�pk+(!+
)�pk]

�
�

1X
n=�1

(�1)n
(n�Q)

(
P

Z
R(! +
;W;+Q)

W � !+

n�Q

dW � i� �R

�
! + 
;

! + 


n�Q
;+Q

�)
+

ei[�pk�(!+
)�pk]

�
�

1X
n=�1

(�1)n
(n+Q)

(
P

Z
R(! +
;W;�Q)

W � !+

n+Q

dW � i� �R

�
! + 
;

! + 


n+Q
;�Q

�)#

(112)

where 
 =M!r and M � 1.

To evaluate (112) for the case when ! = Q!r, we have to look at the �rst �R in (112)

and only consider the special case when ! = (n�M �Q)!r

�R((n�Q)!r; !r;+Q) = (�1)n�(!r)!2r (113)

because �R vanishes otherwise. And similarly, the second �R does not vanish when ! =

(n�M +Q)!r

�R((n+Q)!r; !r;�Q) = (�1)n�(!r)!2r (114)

Thus we see that the special case when ! = Q!r, (112) becomes

e�i
L=c ~H((Q+M)!r) =

� 2iei(QL+(Q+M)`)!r=c

(Q+M)!r=c
sin

(Q+M)!rL

c
sin

(Q+M)!r`

c
�"

ei[�pk�(Q+M)!r�pk ]

�
�

(�1)M
(Q+M)

8<
:P

Z
R((Q+M)!r;W;�Q)

W � (Q+M)!r
M+Q

dW � (�1)M i��(!r)!
2
r

9=
;
3
5

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
(115)
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because the sum
P (�1)n

(n�Q)
: : : vanishes because Q!r 6= (n�M �Q)!r 8n 2 Z.

Similarly

ei
L=c ~H((Q�M)!r) =

� 2iei(QL+(Q�M)`)!r=c

(Q�M)!r=c
sin

(Q�M)!rL

c
sin

(Q�M)!r`

c
�"

ei[�pk�(Q�M)!r�pk]

�
�

(�1)M
(Q�M)

8<
:P

Z
R((Q�M)!r;W;�Q)

W � (Q�M)!r
M+Q

dW � (�1)M i��(!r)!
2
r

9=
;
3
5

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(116)

Using the results of (115) and (116), we can can de�ne a dimensionless quantity ~vQ =

~VQ(Q!r)="Z0�Nq!r�(!r)

~vQ =
1

8�pDd!r�(!r)

s
�pu�k

1 +Q2=4

�
� 1

2i

�
e�i
L=c ~H((Q+M)!r)� ei
L=c ~H((Q�M)!r)

��
(117)

which can be used to compare with ~vF (!r) calculated in Feedback .
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